General Certificate of Education
June 2008
Advanced Level Examination

MATHEMATICS

MFP2
Unit Further Pure 2

ANA

ASSESSMENT and
QuALIFICATIONS

Thursday 15 May 20089.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Express

$$
5 \sinh x+\cosh x
$$

in the form $A \mathrm{e}^{x}+B \mathrm{e}^{-x}$, where A and B are integers.
(b) Solve the equation

$$
5 \sinh x+\cosh x+5=0
$$

giving your answer in the form $\ln a$, where a is a rational number.

2 (a) Given that

$$
\frac{1}{r(r+1)(r+2)}=\frac{A}{r(r+1)}+\frac{B}{(r+1)(r+2)}
$$

show that $A=\frac{1}{2}$ and find the value of B.
(b) Use the method of differences to find

$$
\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)}
$$

giving your answer as a rational number.

3 The cubic equation

$$
z^{3}+q z+(18-12 \mathrm{i})=0
$$

where q is a complex number, has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha \beta \gamma$;
(ii) $\alpha+\beta+\gamma$.
(b) Given that $\beta+\gamma=2$, find the value of:
(i) α;
(ii) $\beta \gamma$;
(iii) q.
(c) Given that β is of the form $k \mathrm{i}$, where k is real, find β and γ.

4 (a) A circle C in the Argand diagram has equation

$$
|z+5-\mathrm{i}|=\sqrt{2}
$$

Write down its radius and the complex number representing its centre.
(b) A half-line L in the Argand diagram has equation

$$
\arg (z+2 \mathrm{i})=\frac{3 \pi}{4}
$$

Show that $z_{1}=-4+2 \mathrm{i}$ lies on L.
(c) (i) Show that $z_{1}=-4+2 \mathrm{i}$ also lies on C.
(ii) Hence show that L touches C.
(iii) Sketch L and C on one Argand diagram.
(d) The complex number z_{2} lies on C and is such that $\arg \left(z_{2}+2 \mathrm{i}\right)$ has as great a value as possible.

Indicate the position of z_{2} on your sketch.

5 (a) Use the definition $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ to show that $\cosh 2 x=2 \cosh ^{2} x-1$. (2 marks)
(b) (i) The arc of the curve $y=\cosh x$ between $x=0$ and $x=\ln a$ is rotated through 2π radians about the x-axis. Show that S, the surface area generated, is given by

$$
S=2 \pi \int_{0}^{\ln a} \cosh ^{2} x \mathrm{~d} x
$$

(3 marks)
(ii) Hence show that

$$
\begin{equation*}
S=\pi\left(\ln a+\frac{a^{4}-1}{4 a^{2}}\right) \tag{5marks}
\end{equation*}
$$

6 By using the substitution $u=x-2$, or otherwise, find the exact value of

$$
\int_{-1}^{5} \frac{\mathrm{~d} x}{\sqrt{32+4 x-x^{2}}}
$$

7 (a) Explain why $n(n+1)$ is a multiple of 2 when n is an integer.
(b) (i) Given that

$$
\mathrm{f}(n)=n\left(n^{2}+5\right)
$$

show that $\mathrm{f}(k+1)-\mathrm{f}(k)$, where k is a positive integer, is a multiple of 6 .
(4 marks)
(ii) Prove by induction that $\mathrm{f}(n)$ is a multiple of 6 for all integers $n \geqslant 1$. (4 marks)

8 (a) (i) Expand

$$
\begin{equation*}
\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right) \tag{1mark}
\end{equation*}
$$

(ii) Hence, or otherwise, expand

$$
\left(z+\frac{1}{z}\right)^{4}\left(z-\frac{1}{z}\right)^{2}
$$

(3 marks)
(b) (i) Use De Moivre's theorem to show that if $z=\cos \theta+\mathrm{i} \sin \theta$ then

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

(ii) Write down a corresponding result for $z^{n}-\frac{1}{z^{n}}$.
(c) Hence express $\cos ^{4} \theta \sin ^{2} \theta$ in the form

$$
A \cos 6 \theta+B \cos 4 \theta+C \cos 2 \theta+D
$$

where A, B, C and D are rational numbers.
(d) Find $\int \cos ^{4} \theta \sin ^{2} \theta d \theta$.

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

